当前位置:首页  >  新闻动态  >  行业标准  >  水质重金属检测的常用方法!

水质重金属检测的常用方法!

发布时间: 2022-07-18      点击次数: 10189



我国《生活饮用水卫生标准》和《污水综合排放标准》分别对生活饮用水中重金属元素的含量和污水中重金属元素的ZUI高容许排放ZUI新浓度作了限制, 其他国家在不同行业也对重金属的含量做出了相应的规定,所以现阶段研究出快速、简便、低成本、高灵敏度的重金属离子检测手段和实现在线实时检测具有十分重要的意义。

1、原子光谱法

原子光谱法是目前痕量元素分析的重要方法,它包括原子吸收光谱法、原子发射光谱法和原子荧光光谱法。

它的优点是检出限低,灵敏度高。原子吸收光谱法的特点是检测灵敏度高、分析速度快、测定高浓度元素时干扰小、信号WD等。原子吸收光谱法的不足之处是测定某元素需用该元素的光源,多元素同时测定尚有困难,对于复杂试样的测定干扰比较严重,有一些元素的测定灵敏度还不足。

火焰原子吸收光谱法测定铅的灵敏度较低, 直接用于测定试样中微量铅,提高灵敏度是关键。为了提高火焰原子吸收光谱法的灵敏度,常采用分离富集技术对样品进行预处理。有研究者通过加入增敏剂吐温 -80 来简化前处理,消除 FeCaAl 等元素的干扰,降低检出限。通过微波消解,可以简化前处理工作,降低检出限。火焰原子吸收分光光度法操作较简单,测试速度快,但检出限较高,只能适用于铅含量较高的样品的分析。

石墨炉原子吸收分光光度计价格较高, 分析速度慢,但检出限低,可以分析水、食品、塑料制品等中的痕量铅。石墨炉原子吸收光谱法测定铅具有很高的灵敏度。对不同种样品中铅的测定都适用,但由于样品中铅含量太低,铅低温易挥发,对实际样品的分析,基体干扰往往比较严重。由于基体效应,在用石墨炉原子吸收光谱法测定铅时应进行分离富集对样品进行处理。用浮动型有机微萃取分离富集样品中的铅,用石墨炉原子吸收光谱法测定铅,相对标准偏差为 5.4%,检出限为 0.9 ngL-1,且该方法可应用于自来水,井水,河水和海水的测定。

原子发射光谱法, 是利用气态原子在受到热或电的激发时发射出的特征辐射进行检测的一种方法。如鲁丹等研究了电感耦合等离子体原子发射光谱法测定进口水性涂料中可溶性铅 - - 镉和铬体。ICP-AES的不足之处在于设备昂贵和操作费用较高。

原子荧光光谱法是通过测量待测元素的原子蒸汽在辐射能激发下所产生荧光的发射强度来测定待测元素的一种分析方法。原子荧光光谱法具有灵敏度高,选择性强,试样量少和方法简单等特点。它的不足是线性范围较宽,应用元素有限, 因为有包括金属在内的许多物质本身不会产生荧光而要加入某种试剂才能达到荧光分析的目的, 而荧光试剂本身比较昂贵。

2、紫外 -可见分光光度法

分光光度法是通过测定被测物质在特定波长处或一定波长范围内光的吸收度,对该物质进行定性和定量分析的方法,紫外 - 可见分光光度法进行定量检测的基本原理是比尔 - 朗伯定律(A=εbc)。紫外- 可见分光光度法的优点是操作简单,是一种相对比较廉价的检测方法,水样中大部分离子均可用紫外 - 可见分光光度法进行测定且检出限可达到很低。

当然可见分光光度法也有不足:光谱干扰比较严重,选择性欠缺;分析物质通常必须用加入显色剂转变为吸收光物质, 有些金属离子的显色剂不易得到,不易选择,有时还会带来附带物的干扰。有些学者研究了铅与 2- 35- 二氯- 2- 吡啶偶氮)-5-二乙氨基酚(35-diCl -PADAP)的显色反应,建立了分光光度法测定化妆品中微量铅的新方法。

双硫腙分光光度法是测定铅的国标方法,适用于测定天然水和废水中微量铅,需要用氯仿萃取,在ZUI大吸光波长510nm处测定,铅浓度在 0.010.30mg/L之间。其摩尔吸光系数为 6.7×104 L/mol.cm ZUI低检出浓度 0.01mg/L

由于使用剧毒试剂氰化钾以及氯仿还有繁琐的萃取操作限制了双硫腙法使用。用 Tween-20胶束- 双硫腙显色体系来测定痕量铅,使得操作简单可以在水相中测定铅,避免了氰化钾和氯仿的使用,获得较好的结果,线性范围0.06-60mg/L ,检出限可以达到 10ug/L 。也有学者用 Amberlite XAD-1180柱富集分离双硫腙和铅的络合物,可以使检出限达到3.5ug/L。动力学光度法其基本原理为利用某一化学反应的速度与催化剂浓度、活化剂浓度、阻抑剂浓度、解除剂浓度等存在的函数关系进行测定。

3、质谱法

质谱法是将待测物质的分子转变成带电粒子,利用WD的磁场(或交变电场)使带电粒子按照核质比的大小顺序分离开来,并形成可以检测的谱图。在重金属检测中一般使用等离子体质谱法(ICP-MS),将电感藕合等离子体与质谱联用,利用电感藕合等离子体使样品汽化,将待测金属分离出来,从而进人质谱进行测定。

ICP-MS可通过离子荷质比进行无机元素的定性、定量分析,可与GX液相色谱、气相色谱、毛细管电泳等进样或分离技术联用,具有比原子吸收法更低的检测限,是痕量元素分析领域中ZUI先进的方法,具有灵敏度高,精密度好,检出限非常低(可以达 ppt ppq 级)等优点,分析曲线的线性范围更宽,干扰少等优点,可用于除汞以外的绝大多数重金属的测定。但其价格昂贵,易受污染,推广应用受到限制,目前ICP-MS的应用还仅仅局限在研究中。

4、电化学分析法

电化学分析法是一种根据物质在溶液中的电化学性质及其变化来确定其组成与浓度的方法。电化学分析法检测重金属主要包括伏安法、极谱法和离子选择性电极法等。电化学分析的测量信号是电导、电位、电流、电量等电信号,所以电化学分析的仪器装置较为简单,易于自动化和连续分析,是一种GR的快速、灵敏、准确的微量和痕量分析方法。

它的检测限低10-12,而且仪器简单,价格低廉。伏安法和极谱法虽然有很低的检测下限,但是其检测条件苛刻, 仪器操作难,所以实际检测中运用并不多。以极谱法为例,试样经消解后,铅以离子形态存在。

在酸性介质中,Pb2+ I-形成的 [PbI4]2-络合离子具有电活性, 在滴汞电极上产生还原电流。峰电流与铅含量呈线性关系,以标准系列比较定容。用示波极谱仪在峰电位 -470 mV 处记录铅的峰电流。用标准曲线法计算试样中铅的含量。极谱法的检出限为0.085mg/kg。极谱法设备较廉价,检测速度快,操作简单,但检出限偏高,重现性较差。而离子选择性电极法是通过测量电极电位来测定离子活度的一类电化学方法,其所需仪器设备便携价廉,分析操作简单单快速,测量线性范围广,选择性和灵敏度较高,因此可现场分析。仍处于发展阶段,运用不够成熟,有待完善。

5、基于 QCM技术的检测方法

石英晶体微天平是一种基于压电效应的高灵敏质量传感器 (灵敏度可达 ng 级),装置简单,使用方便,已广泛应用于生物化学传感检测,金纳米粒子较大的团簇质量为以石英晶体微天平为代表的质量敏感型传感器提供了高灵敏度的物质基础。目前基于石英晶体微天平的纳米金探针检测重金属已有一定的研究,此方法不仅具有灵敏度高、选择性好的特点,而且方法简单、快速、成本低、便于现场分析因而便于普及。已有报道通过在石英晶体微天平表面形成纳米复合物引起质量变化来检测溶液中的痕量重金属离子。其做法是先让金属离子在羧基修饰的 QCM表面进行络合吸附,然后加入羧基修饰的金纳米粒子,使之与 QCM表面吸附的重金属离子结合,在 QCM 表面形成一层三明治结构的纳米复合物, 引起 QCM谐振频率明显下降,
从而实现定量检测。该方法大大提高了 QCM 检测重金属离子的灵敏度,且具有重现性好、传感器易再生等特点。

6、电感耦合等离子体发射光谱法

电感耦合等离子体发射光谱仪 (ICP)在铅的特征谱线处有吸收,在一定浓度范围内,其吸收值与铅含量成正比,通过标准曲线法确定试样中铅含量。ICP法的检出限可达0.11 μg/gICP 分析速度快,可以同时快速分析多种元素,检出限低,标准曲线的线性范围宽,可达 46个数量级,样品消耗少。

通过和其它检测方法联用,检出限可达更低的数量级,重复性更好。因此ICP 被广泛应用于医药卫生、食品安全、地质冶金等众多领域。但是ICP 设备昂贵,制样复杂,仪器消耗大量的氩气,不能普遍推广。展望在工业高速发展的现代,对环境的保护显得尤为重要。 为了对重金属离子的污染程度进行科学的评价及治理,需要对水体中的重金属离子含量进行现场、实时分析。

7、其他方法

纳米材料是指颗粒直径为纳米量级(0.1-100nm)的粒子及由其聚集而成的纳米固体材料。它们处于原子簇和宏观物体之间的过度区,处于微观体系和宏观体系之间,由于粒径小,表面曲率大,使得纳米颗粒具有小尺寸效应、表面效应、量子尺寸效应特性。金纳米探针在分析检测中已逐渐受到关注。

纳米金探针ZUI早出现于 1996 年,当年美国西北大学的 Mirkin 教授等将巯基修饰后的寡核苷酸通过 Au-S 键共价结合在纳米金表面,组装成纳米金探针,应用于基因检测,基于此平台, 利用纳米金探针检测重金属离子开始受到关注,目前国内外在这方面的研究已有一些进展, 它在检测重金属离子所表现出的优越性备受肯定,是一种简便、快速的方法,前景也十分可观。

金纳米粒子比色法检测重金属,通过重金属离子或其他大分子调节纳米粒子之间的距离,会引起吸收峰的位移。在检测铅方面,使用DNA剪切酶来控制纳米金粒子的距离已实现比色是运用较多的方法。双链基板链与核酶形成的双链DNA修饰的金纳米,因静电排斥力和空间位阻,成分散状态,呈现红色,遇到铅离子后,发生特异性酶反应,双链断开,纳米金探针表面只剩单链,变为聚集状态,由红色变紫色。

此法与早期的通过酶反应破坏 DNA交联剂使纳米金由聚集态转为分散态相比,检测限明显降低,可达 100nM,而且技术更简单,因为不需要控制聚集态的WD性。发展十分迅速的利用纳米金的非线性光学性质―共振瑞利散射来测定自来水的重金属,是一种简便灵敏的分析技术,其分析测定在一台普通的荧光光度计上就可加以实现。该法具有较高的灵敏性和选择性,可以快速简单,可靠地监测水中的重金属。共振光散射法虽在分析化学中得到广泛应用,但其理论研究不足,对方法的具体应用中出现的一些现象尚不能圆满解释。

近期已发展成熟表面增强拉曼光谱技术使纳米金检测重金属离子灵敏度有了极大的提高, 但是目前只能进行定性或半定量检测,此法有望发展成为痕量重金属离子检测的高灵敏度技术之一。此外还有基于金纳米粒子的电化学检测法,比如用纳米金修饰电极的进行电化学检测和纳米金放大的电化学检测法等

目前国内检测水中重金属元素还主要在实验室进行,对要分析的区域进行现场采样, 然后带回实验室用分析仪器进行分析。这只能静态的表现某点水样中重金属的污染情况,而且水体基体复杂,运用仪器进行分析时还需要进行复杂的前处理,这个过程易引入其他干扰物质,其分析结果的准确度以及数据的可靠性受到质疑,满足不了目前水质监测的形式需要。随着科学技术的不断发展,痕量铅的分析检测技术也在不断地更新、完善和迅速发展,尤其是快速检测技术更能适应现代GX、快速的节奏和满足社会的要求。

仪器分析法可以保证数据的JQ性和准确性,但其流程仍比较烦琐。尽管以纳米金进行分析的方法及其它速测技术的开发过程需投入较长时间的研究,但因其具有操作简单、 检测快速、灵敏度高、特异性强、价廉、样品所需量少等优点,适合现场分析检测。总之,纳米探针快速检测痕量铅技术的快速、灵敏、简便等优点,使之在环境检测中有着广泛的应用价值和发展前景。







电话:TEL

0538-6636150

邮箱:EMAIL

[email protected]

地址:ADDRESS

山东省泰安市泰山区温泉路54号

版权所有 © 2022 妃儿港澳资料库 Al Rights Reseved    备案号:鲁ICP备17010793号-1
技术支持:环保在线    管理登陆    sitemap.xml